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IAMINAR FRICTION AND HEAT!TRANSFER

NUMRERS FROM 1 TO 10

AT MACH

By E. B. Klunker and F. Edward McLean

SIIMMARY

A method of solving the laminar boundary-layer equations for @r-
epressibleflow, in the absence of a pressure gradient, is.developed
without hposing restrictions on the thermal properties of the fluid
medium. Velocity and temperature profiles and boundary-layer charac-
teristics have been computed for lkch numbers from 1 to 10, utilizing
experimental values of the heat capacity, viscosity, and conductivity.
The analysis shows that an effective temperature, which is a function
of the surface temperature and stream conditions and is similar to the
recovery temperature, arises naturally and is the proper reference tem-
perature to be used fi heat-transfer calculations. The effective tem-
perature and the recovery temperature become identical for the condition
of zero heat transfer. The recovery factor and the analogous effective-
temperature function decrease substantially with increasing values of
Mach number. Thus, the high-speed aerodynamic heating problem is not
as severe as is indicated by simpler theories.

INTRODUCTION

The large extent of laminar flow expected on missiles and aircraft
operating at high speeds and altitudes makes an accurate knowledge of
the laminar-flow frictional effects and heat-transfer characteristics
desirable for practical design considerations. The calculation of the
boundary-layer characteristics at high speeds is complicated by the
necessity of considering simultaneously the compressibility of the fluid
medium and the variation of thermal properties with temperature. As a
consequence of the compressible nature of the flow, the temperature
variation throughout the boundary layer is large and the variation of
the thermal properties of the fluid is significant. At a stream Mach
number of 5, for example, the ratio of maximum boundary-layer temperature
(absolute) to stream temperature is of the order of 5 to 1 for the
condition of zero heat transfer at the surface. Moreover, for these
conditions, experiment shows that the viscosity and conductivity
increase by factors of approximately 3 and 4 to 1, respectively, over
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their values
increases by
more than 10
the boundary
restrictions
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at the edge of the boundary layer, while the heat capacity
approximately 16 percent and the Prandtl number decreases
percent. Thus, since the temperature variation within
layer at high supersonic speeds is large, assumptions or
regarding the thermal properties can conceivably have a

significant influence on the calculated characteristics of the boundary
layer.

The calculation of the characteristics of the laminar boundary
layer at high speeds has been considered by several investigators
(references 1 to 4, for example). In these and similar analyses, how-
ever, certain restrictions are imposed on the thermal properties of the
fluid. Two assumptions are generally made: First, the heat capacity
and the Wandtl number are considered to be independent of temperature;
and, second, some stiple law for the variation of viscosity (or con-
ductivity) with temperature is specified. The constancy of the heat
capacity and Prandtl number tiplies that the viscosity and conductivity
vary with temperature in the same manner. For air, these conditions
are nearly satisfied for small temperature variations. The viscosity-

()Era
temperature relation is frequently taken as the equation ~ = —

VI T1

where o is a constant, a linear relation between viscosity and tem-
perature, or the Sutherland equation. Of these three, the Sutherland
equation especially gives good results for the viscosity over a wide
temperature range, although it is not as satisfactory for the conduc-
tivity. The choice of a Lkear viscosity-temperaturerelation (refer-
ence 4, for example) or a Prandtl numiberof unity (reference 1, for
example) leads to an essential simplification, since in each case only
one differential equation need be solved. Although these various
restrictions on the thermal characteristics appear justified for small
temperature variations, they are not justified a
lation of boundary-layer characteristics at high
temperature variations are large.

The present investigation is concerned with
characteristics of the laminsr boundary layer in
sure ~adient at supersonic speeds. The purpose

priori for the calcu-
Mach nuniberswhere the

the calculation of the
the absence of a pres-
of’the investigation

iS twofold: fimt, to determine the characteristics of laminar boundary
layers at supersonic Mach numbers and, second, to provide information
which may be used to evaluate restrictions frequently imposed on the
thermal characteristics. The method developed herein places no
restrictions on the thermal properties of the fluid. Expertiental
values for the variation of heat capacity, conductivity, viscosity, and
Rrandtl number have been employed in the calculations fi order to obtain
the flow properties as accurately as possible. The method can be adapted
to the calculation of boundary layers with suction or blmring.
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Computations have been made for a
the stream temperature at Mach numbers
surface for Mach numbers from 1 to 5.

3

surface temperature equal to
from 1 to 10 and for an insulated
In addition, calculations have

been made at a ~ch number of 7 for ratios of surface temperature to
stresm temperature of 2 and 4. The stream temperature was taken
as -67° F, a value that corresponds to the isothermal region of the
NACA standard atmosphere.

The method of solution is essentially one of successive approxi-
mation. Ten iterations were required inmost cases to obtain a dif-
ference of less than 1 percent, for both the shear stress and the
heat-transfer rate at the surface, between successive approximations.
Even with the use of automatic computing equipment (the BeU Telephone
Laboratories x-667W relay computer at the Langley Laboratory was used)
appreciable time is required for the solution. As a consequence, the
number of computations completed thus far is inadequate for a critical
comparison of calculated boundary-layer characteristicswith other
analyses.

SYMBOIS

coordinates parallel and normal to stream direction

stream function

&

components of velocity along x- and y-axes

stream velocity ..

Mach number

temperature

temperature function

density

.
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1.

heat capacit~ at constant pressure

ratio of heat capacities at constant pressure and
constant volume

coefficient of viscosity

kinematic viscosity

ther&l conductivity

local heat-transfer rate

local heat-transfer coefficient

Reynolds niunber

Prandtl number

Nusselt number

shear stress

skin friction

skin-friction coefficient

inte~ating factors

p%%l*

function ’definedhy equation (13)

function definedby equation (I_6) “

function defined%y equation (16)

function definedby equation (14)

function definedby equation (17)

.
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Subscripts:

.

,

,,

1 free stream or at edge of boundary layer

e effective

r recovery

s surface

Superscript; ,’

* dimensionless quantity based on stream conditions

.

ANALYSIS

Basic equations.- With the x-axis taken in the free-stream direc-

tion, the two-dimensional compressible-flowboundary-layer equations
for steady motion in the absence of a pressure gradient may be written
as follows:

Momentum equation:

Continuity equation:

: (pu) + : (pv) = o

Enerm equation:

,,

32 ‘=+9’ “($YCppuax~ CPPV ay b ay

(1)

(2)

(3)
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where u and v are the velocity components in the direction of the
x- and y-axes, respectively, p is the density, T is the absolute
temperature, ~ is the heat capacity at constant pressure, y is the

coefficient of viscosity, k is the thermal conductivity, and the
thermal properties are functions of the temperature.

The set of partial-differentialequationa (1) to (3) maybe
reduced to two ordinary differential equations for the particular cases
of constant temperature or zero heat transfer at the surface y = O.
In order to accomplish this reduction it is convenient first to intro-
duce the stream function as a new independent variable. The velocity
components are related to the stream function by the equations:

M
‘u=&

2 aifpv =-—
“ax’ }“

.

(4)

Then by taking x and t as the independent variables, equations-(l)
and (3) may be transformed into

(5)

(6)

and equation (2) is satisfied identically by virtue of equation (4).

It is found that surfaces of constant ~/~ are both isotherms

and surfaces of constant velocity. Thus, with the choice of an inde-
pendent variable proportional to ~/~, the equations of motion and
energ may be reduced to ordinary differential equations for boundary
conditions of constant temperature or zero heat transfer at the sur-

.1,
face y

and the
become

= O. By introductionof the independent variable ~ = , w

nondimensional
‘1Plplulx

temperature function IS,equations (5) and (6)

\
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(7)

(8) -

T++-1 T*-1
d =— =

up 7-1——
2C T1

M12
PI 2

The symbol 7 represents the ratio of heat capacities at constant
pressure and constant volume, u~ is the stream velocity, and the

subscript 1 refers to values at the edge of the boundary layer or
values in the free stream.

Von Mises (reference 5) employed v as an independent variable
in the boundary-layer equatio~ for incompressibleflow and many authors
since have utilized this transformation for various compressible-flow
problems. The transfomnations employed herein follow those of
Von K&m& and Tsien (reference 1).

The solution of the boundary-layer equations for compressible flow
may be simplified in two cases where the heat capacity and Prandtl
number are takep as constants. For a Prandtl number of unity, the
temperature and velocity have a simple parabolic relation and only the
differential equation of motion need be solved to ?leterminethe flow
throughout the bdundary layer (reference 6). For a linear viscosity-
temperature relation the equation of motion iS independent of the
energy equations and may be reduced to the form occurring in incompres-
sible flow. (See reference 4, for example.) Thus only the energy
equation need be solved, since the incompressible-flowsolutions are
Icnolm. Where no restrictions are placed on the heat capacity, viscosity,
conductivity, and Rrandtl number, both equations,(7) and (8) must be
solved to determine the flow properties in the boundary layer.

&though the nonlinear equations (7) and (8) do not yield to a
direct analytical solution, they can be solved numericallyby a method
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.

of successive approxtit ions. Sidce CP*, P*, P*, ~d Pr are

functions o~y of the temperature, and thus ftictions of ~, the
coefficients of the derivatives in equations (7) and (8) may be con-
sidered as known functions if some initial approximate solution is
given. Then, with the quantities

and

considered as tiown functions of ~, and with the inte~ating factors

and

the equation of motion (7) and the energy equation (8) may be written as

(9)
.

(lo)

Solution of boundary value problem.- !I%oproblems are considered

herein. The first is to determine the flow throughout the laminar
boundary layer sub~ect to the condition of a constant surface tem-
perature, and the second is to determine the flow for the condition

.
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of zero heat transfer at the surface. The boundary conditions to be
satisfied for these two problems are:

For constant surface temperature:

At the surface (~ . O), u*= O and $ =4S = Constant

At infinity (~+cu), u*= 1 and O =0

For zero heat transfer at the surface:

At the surface (~ = 0), u* = O and

()$ ‘( )ad— =0’

y=o

. Constant P~* ~C ~=o

At infinity (~ eoJ), u* = 1 and t9= O
●

The subscript s denotes the values at the surface.

Since the boundary conditions on u* are the same for both problems,
the solutions are of the same form.

The first integral of equation (9) is

and a second integration gives the velocity

J’{dgU* . F1
Oz

From the boundary condition at infinity the

(I-1)

as

(12)

function F, is found to be

w d~ ‘1

)(f)
Fl(MpTIITs = Q z

(13)

The velocity distribution is thus determined from equations (11) to (13)
for a given surface temperature (or for zero heat transfer at the
surface) and for given stream conditions.

. ..—--- ..-.-—. .—.--— — —-— --- ..——.-— —~ — —- ..——.—.. . .—— ———
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The temperature distribution corresponding to a constant value of
the surface temperature is obtained by integrating equation (10). The
first inte~al. is

where

After a second integration the temperature function is found to be

(14)

From the boundary condition at infinity, the function F2 is deter-

mined as

where

g(%)%%)=(( *)-’

The t&nperature distribution corresponding to
at the surface ~ = O is found
of equation (10) satisfying the

DA

.

zero heat transfer
in a similar manner. The first integral
conditions of zero heat transfer is

dil— = -Q(g)
a{

(17)

r,

.

\
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where

u.

.

and after a second integration the temperature

For c= O, f3 becomes the recovery factor

Equations (12) and (15) give the velocity
butions as functions of ~ corresponding to a
perature, whereas equations (12) smd (18) give

f%nction is found to be

(18)

and temperature distri-
specified surfaoe tem-
the velocity and tem-

perature distributions as functions of ~ corresponding to zero heat
transfer at the solid surface. These solutions may be expressed in

terms of the more familiar independent variable q = y
r
~ (where v

is the kinematic viscosity) by means of the relation

.

or

found from the expressions defining q and ~ and from equation (4).

Comments on method of solution.- The solution of the equation of

motion and the energy equation described herein imposes no restrictions
on the variation of the material properties of the fluid - heat capacity,
viscosity, and conductivity - with temperature. Since the method of
solution is essentially one of numerical integration, experhenta~
determined values of these parameters or values found from ~lytical

-. .,

.- .
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expressions may be used with equal facility. The equations developed
herein may be simplified somewhat, with an attendant reduction in
computational labor, for the particular case in which the heat capacity
and the Prandtl ?mmiber Pr are taken as constmts. With these restric-
tions the function 1. reduces to f/Pr and the integrating factor ~

Pr
,

reduces to a .

The solution of the equations for the velocity and temperature dis-
tributions throughout the boundary layer is a step-by-stepmethod of
successive approximations. Thus, initial approximate solutions for the
velocity and temperature distributions are required. These initial
solutions may conveniently be taken as those for Pr = 1 and P*IL* = 1

or, better still, the solutions given in reference k. These values are
used to compute the quantities f, k, a, and ~ as functions of ~,
and the”velocity and temperature distributions are found by numerical
integration. With these new values for the velocity and temperature
distribution, the functions f, X, a, and B sxe recalculated and
the second approximation to the velocity and temperature distributions
is determined. The process is continued until the desired accuracy is
obtained. This method of solution is essentially the same as the one
employed for evaluating the velocity distribution in reference 1.

RESUECS’AND DISCUSSION

The method described in the preceding section has been employed to
calculate a number of veloc’ityand temperature profiles and boundary-
layer characteristics at supersonic Mach nunibers. Faired experimental
values of Cp, P, and k ,pr-ily from reference 7 were used in the

computations in order to obtain reliable results at the high Mach nunibers
considered. The free-stream temperature T1 was taken as 392.7 Rankine

(-6P F), the value at the isothermal level of the standard atmosphere,
and the correspondingvalues of the thermal properties were taken as:

~1 = 7.718 Btu/(slug)(deg)

P1 =3.o58 x1o-7 slug/(ft)(sec)

kl = 3.227x lo-6Btu/(ft)(sec)(deg)

Mach

Pq = 0.73

The calculated velocity and temperature profiles for Ts* . 1 at

numbers from 1 to 10 are presented in figure 1, and some results at

.,

— — — ———- — . -—.—.
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a constant Mach nuniberof 7 for values of Ts* =,1, 2, and 4 are given

in figure 2. Profiles for the condition of zero heat transfer at the
wall are shown in figure 3. Although the calculated temperatures are
very high at high Mach numbers, it is significant that these values
are considerably lower than those predicted by simpler theories. Also
of interest is the fact that the velocity profiles for the condition
of zero heat transfer are nearly linear, whereas the profiles for a
constant surface temperature have appreciable curvature. The velocity
and temperature approach their stream values at smaller values of q
for high Mach numbers than those predicted by simpler calculations;
thus, a thinner boundary layer is indicated.

The frictional and heat-transfer characteristicsmaybe evaluated
with the aid of the equations developed in the analysis. The shear
stress at the wall is given by

TO = ()@Y y.() ‘*(’*’ti*&l
where R is the Reynolds number ulx/vl. l?romthe equation defining a

and from equation (11),

.

and the local skin friction may be written as

“

.

‘luf

‘S=TF1

The friction drag may be found by integration as

J
x P@

D= TB dx = 2—
0 F ‘1

(19)

. . . .. _ _._ —.-A. . .
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and the average skin-friction coefficient then is given by

(20)

The skin-frict~on coefficient fo&d from equation (20) is shown in
figure 4 for the conditions of constant surface temperature and zero
heat transfer. This figure shows that the skin friction is significantly
influencedby both the Mach number and the thermal state at the surface.
The skin friction decreases with increasing Mach number, and at a given
Mach nuuiberthe skin friction increases with decreasing values of Ts*.

At a Mach number of 5 for example, the skin friction decreases from the
Mach number 1 value by approximately 18 percent for zero heat transfer,
and for a value of Ta* = 1 the decrease is approximately 7 percent.

The convective heat-transfer rate at the surface per unit area (q)
is given by the expression

and from equations (14) and (16), since p = 1 and q.= O for { = O,

The local heat-transfer rate then maybe written as

.
The heat-transfer rate is often expressed as the product of a

heat-transfer coefficient h and a temperature increment. The tem-
perature increment Te - Ts arises naturally in equation (21) and

.—— s.
——— .— -..— —..—
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with this temperature difference an effective heat-transfer coefficient
may be defined as.

rPlplulhe = -Wpl y (22)

The usual temperature increment used for defining the heat-transfer
coefficient is the difference between the recovery temperature and the
surface temperature. With this temperature increment the heat-transfer
coefficient becoms

rPIP1ul Te* - Ts* . h Te* - Ts*
h=-gcpl ~T*

r- T6* ‘ e Tr* - Ts*
(23)

The relative magnitudes of the temperatures Tr and Te may be deter-

mined from the recovery factor ~r and the effective-temperature

function tie given in figure 5. Two points are significant: First,

the recovery factor is considerably smaller than the effective-temperature
function; second, both or and $e decrease with increasing Mach numiber.

The value of the recovery factor is UEually considered to be approxi-
mately 0.85 for lxminar flow. Figure5 shows that for a Mach number
of 5 the recovery factor is 0.766 and the effective-temperature function
for Ts* = 1 iS 0.822. These values represent a sizable reduction in

the recovery temperature Tr and the effective temperature Te. Thus,

the aerodynamic heating characteristics.at high Maclinumbers do not
appesr to be as severe as is indicated by simpler theories.

The equations defining ~r and $e are of the same form. The

only difference between the two ‘expressionsis that the parameters
OCCUI’I’@ ti de correspond to the condition of Ts* = Constant,

whereas the values in the expression for flr correspond to the condi-

tion of zero heat transfer. The functions ~r and $e become identical

for the condition of zero heat transfer. Since the temperature dif-
ference Te - Ts arises naturally in equation (21) for the heat-transfer

rate, it appears that the proper reference temperature to be used for
heat-transfer characteristics is Te rather than Tr.

two
With the heat-transfer coefficients givenby equations (22) and (23),
Nu.sseltnumbers may be defined as

.

. .. .. . . .------- ..-— --——— . . . .. ..- —————..- . ... . . -.–—- ,-
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Te* - T~* Te+i - T~*

I?u=== ‘-1 ~ Tr* . T~*kl
= N%

Tr* - T~*

Figure 6 shows that the quantity INu]
nuuiber,whereas IN%I decreases. The

with increasing kch number in direct
The quantity INuI increases with ~ch

NACA TN 2499

/’(24)

increases with increasing Mach
Nusselt number ]T?~]dec~eases

prqortion to the function g.
number, however,-since the qpan-

Te* - ‘I’s*
tity increase’sfaster than g decreases. Th&e is littleTr+ - T~*

change in N% at Wch numibersabove 7, since the heat-transfer coef-

ficient ~ changes very little.’ The change of Nu or N% over

the entire l@ch nuniberrange is not large.

From equations (19) and (21) a simple relation between the heat-
transfer rate and the shear stress is found: .

.,

q g’ %+
—. = -— — (Te+F - T#) -
‘s F1 U1

This relation, together with the heat-transfer rate f%om equation (21),
is shown in figure 7. Since the skin friction decreases and jql increases

with Mach number, the ratio lq/Ts\ increases tith Mach number for a given

value of Ts*. The calculations at a’Mach number of 7 indicate that the

effect of increasing values of Ts* is to decrease both the heat-transfer

rate Iql and the shear stress Ts, and the ratio lq/Ts also decreases.

Langley Aeronautical Laboratory
.

National Advisory Committee for Aeronautics
Langley Field, Vs., July19, 1951 .

.
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Figure ~.- Variation of effective temperature function and recovery factor
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Figure 6.- Vsiiation of ~ selt numbers, Nue and Nu, with stream
Mach number.
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Figure 7.- Variation of the local heat-transfer rate and the ratio of heat
trsnsfer to shear stress with stream Mach number.
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